
Génie Logiciel Avancé

Université Paris-Cité

Édition 2025-2026

Léo Andrès

The bookshop picture was taken from Wikimedia , the original author is Birte Fritsch . The picture is
licensed under the Creative Commons Attribution 2.0 Generic license .

The Linus comic strip was taken from Peanuts by Charles M. Schulz .

The XKCD comic was taken from xkcd.com/2154 and is licensed under the Creative Commons
Attribution-NonCommercial 2.5 License .

https://commons.wikimedia.org/wiki/File:Livraria_Lello_-_Livraria_Chardron_-_Porto_(66)_(52436066148).jpg
https://www.flickr.com/people/103472324@N07
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by/2.0/deed.en
https://en.wikipedia.org/wiki/Peanuts
https://en.wikipedia.org/wiki/Charles_M._Schulz
https://xkcd.com/2154/
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-nc/2.5/

Table des matières

1 Avant-propos . 5

2 Introduction . 7
2.1 Méthodes de détection d’erreurs . 7

2.2 Types algébriques et dénombrement . 9

3 Production manuelle de tests . 13
3.1 Tests manuels . 13

3.2 Tests unitaires . 14

3.3 Tests d’intégration . 16

4 Évaluer la qualité d’une suite de tests . 19
4.1 La couverture du code . 19

4.2 Graphes d’appel et graphes de flot de contrôle . 19

4.3 Critères de couverture formels . 19

4.4 Mutation testing . 20

5 Génération de tests automatique . 21
5.1 Property Testing: QuickCheck . 21

5.2 Fuzzing . 21
5.2.1 Boîte noire : Radamsa . 21
5.2.2 Boîte grise : AFL++ . 21
5.2.3 Boîte blanche : libFuzzer . 22
5.3 Exécution symbolique et concolique . 22

5.4 Bounded Model Checking : CBMC . 22

6 TODO . 23

6 Bibliographie . 25

3.1 « What’s even worse is, a month ago they transferred me to work on the game I was
already playing, and suddenly I found myself procrastinating by playing the one I’d been
assigned before. It’s possible they’re onto me and this is all part of the plan. » 13

1. Avant-propos

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

Remerciements

Merci à Gabriel Scherer, de m’avoir encouragé à donner ce cours.

6 Chapitre 1. Avant-propos

2. Introduction

Dans ce cours, nous allons nous intéresser au génie logiciel. En particulier, à la façon dont on peut faire
au mieux afin qu’un logiciel fasse ce qu’on attend de lui en ayant une consommation de ressources
acceptables. Par « ce qu’on attend de lui », on sous-entend généralement deux choses :

• qu’il n’y ait pas d’erreur à l’exécution (i.e. qu’il ne « plante » ou ne « crash » pas) ;
• qu’il respecte sa spécification (i.e. que les résultats qu’il donne soient ceux que l’on voulait obtenir).

Par « consommation de ressources acceptables », on parle généralement du temps et de la mémoire, mais
on peut parfois s’intéresser à d’autres métriques : consommation électrique, temps de démarrage plutôt
que temps total, nombre de connexions réseau etc.

Cependant, un logiciel ne doit pas être considéré comme un objet figé une fois son développement
initial terminé, mais comme quelque chose qui va devoir évoluer au cours du temps. Lors de sa conception,
il faut donc s’assurer du respect des deux propriétés mentionnés précedemment, mais également du fait
qu’elle vont devoir être maintenues au fil du temps. C’est d’ailleurs, assez souvent, la difficulté principale.

2.1 Méthodes de détection d’erreurs

Il existe différentes méthodes permettant de détecter la présence potentielles d’erreurs à l’exécution ou le
non-respect de sa spécification par un programme. On peut les classer dans trois différentes familles :

1. Le test, qui regroupe de nombreuses méthodes telles que le fuzzing, l’exécution symbolique ou le
model checking.

2. L’interprétation abstraite.
3. La preuve de programme, qui comporte des méthodes telles que la preuve interactive et la vérifi

cation déductive.

Ces trois familles se différencient par certaines propriétés :

1. La complétude : la méthode ne produit pas de fausses alarmes (on parle aussi de faux positifs) dues
à des sur-approximations.

2. La correction : la méthode ne rate pas de véritables erreurs (on parle aussi de faux négatifs) du fait de
sous-approximations.

3. L’automatisation : la méthode permet d’obtenir des résultats automatiquement, sans intervention
humaine.

Il existe plusieurs théorèmes mathématiques qui affirment qu’il est impossible pour une méthode
d’analyse d’avoir les trois propriétés à la fois - du moins lorsque l’on cherche à être capable d’analyser
des programmes arbitraires. Il s’agit par exemple des théorèmes de Rice et de Gödel. Cela signifie qu’il
est possible pour une méthode de détection d’erreur d’avoir, au mieux, deux propriétés parmi les trois
présentées. C’est justement la présence ou non de ces propriétés qui permet de les classer parmi trois
familles différentes :

8 Chapitre 2. Introduction

• le test est automatique et complet, mais pas correct ;
• l’interprétation abstraite est automatique et correcte, mais pas complète ;
• la preuve de programme est complète et correcte, mais pas automatique.

Com
pl

ét
ude Correction

Automatique

Preuve

Int. abstraiteTest

∅

Preuve de programme

La vérification déductive, bien que correcte et complète, repose en grande partie sur l’intervention
humaine [76]. Cette méthode exige que le programmeur fournisse des invariants sur les boucles et les
types, ou prouve la terminaison de certaines fonctions, par exemple en fournissant des variants. Le
programme, sa spécification et les éléments fournis par l’utilisateur sont alors transformés en un théorème
mathématique qui est passé à des prouveurs automatiques. Lorsque le prouveur automatique échoue, c’est
généralement que l’utilisateur n’a pas fourni les bons invariants (ou bien que le programme est effecti
vement incorrect). Il est également possible d’effectuer la preuve du théorème généré via un assistant de
preuve. Si elle garantit des preuves très rigoureuses de la correction des programmes, sa mise en œuvre
demande des efforts considérables, car elle n’est pas entièrement automatisée. Néanmoins, il arrive que
sur certains programmes, la preuve soit complètement automatique. 5 L’objectif dans l’implémentation
de cette méthode est de minimiser l’intervention manuelle du programmeur et d’automatiser le processus
autant que possible. Des exemples d’outils de vérification déductive incluent Why3 [83], Boogie [60] et
Viper [92].
La preuve interactive est très similaire à la vérification déductive. Celle-ci s’effectue au travers d’un
assistant de preuve, qui guide l’utilisateur dans la preuve manuelle d’un théorème. La preuve se fait
par l’utilisation de tactiques que l’utilisateur doit combiner. Une tactique est par exemple l’application
d’un théorème déjà démontré, ou bien l’utilisation d’une hypothèse. Aujourd’hui, il existe des techniques
faisant appel à des prouveurs automatiques tels que des SMTs, ce qui permet d’automatiser une partie de
la preuve. Des exemples d’outils de preuve interactive incluent Rocq, HOL, Isabelle ou Lean.

2.1 Méthodes de détection d’erreurs 9

Interprétation abstraite

Proposée par Cousot et Cousot en 1977 [6], l’interprétation abstraite est une méthode automatique et
correcte. Cependant, elle n’est pas complète, ce qui signifie qu’elle peut signaler des bogues qui n’existent
pas réellement, issus des approximations effectuées par l’analyse. Elle fonctionne en construisant une sur-
approximation des états possibles du programmes au travers de domaines abstraits. Cela lui permet
par exemple de générer des invariants qui garantissent certaines propriétés. Lorsqu’une propriété ne
peut pas être garantie, une alarme est levée et signale à l’utilisateur une potentielle erreur. Cependant,
lorsque la sur-approximation contenait des comportements impossibles en pratique, cela mène à des
fausses alarmes. Cette méthode est donc moins adaptée à la recherche de bogues, car le tri entre les faux
positifs et les véritables bogues peut s’avérer fastidieux. Néanmoins, il arrive sur certains programmes
que l’approximation ne mène pas à des faux positifs. L’enjeu dans l’implémentation d’un moteur
d’interprétation abstraite est de limiter le nombre de faux positifs. Des exemples notables de moteurs
d’interprétation abstraite incluent Astrée [56] et Mopsa [158].

Test

Les méthodes de test sont trop nombreuses pour pouvoir être toutes décrites succintement ici. Cependant,
c’est sur ces méthodes que l’on va se concentrer dans ce cours et elles seront donc détaillées plus loin. Ces
méthodes sont automatiques et complètes. Toutefois elles ne sont pas correctes, car elles peuvent passer
à côté de certains bogues ou ne pas aboutir à une conclusion - par exemple si ce sont des méthodes qui
peuvent ne pas terminer. Il arrive, dans de rares cas, qu’elles puissent offrir une garantie de complétude et
de correction lorsqu’elles terminent. Ces approches sont donc particulièrement adaptées et efficaces pour
la recherche de bogues, même si elles le sont moins pour prouver la correction complète d’un programme.
L’implémentation de ces méthodes doit chercher à minimiser les sous-approximations, autrement dit, à
maximiser le nombre de cas couverts.

2.2 Types algébriques et dénombrement

Beaucoup des méthodes de tests sont des variations sur l’idée d’essayer le programme avec différentes
valeurs d’entrées et de vérifier que le résultat est celui attendu. Cependant, le nombre des valeurs d’entrées
possible est généralement très grand, lorsqu’il n’en existe pas une infinité. Dans cette section, nous
cherchons donc à mesurer le nombre d’entrées possibles afin de fournir des ordres de grandeur qui seront
utiles pour développer des intuitions dans le reste du cours.

Type et habitants

Soit 𝑡 un type. On note |𝑡| le nombre d’habitants du type 𝑡. Il s’agit du nombre de valeurs distinctes de
type 𝑡. Quelques cas simples :

𝑡 Valeurs |𝑡|

| ∅ 0

unit () 1

bool false, true 2

char …, 'a', 'b', 'c', … 256

int …, -2, -1, 0, 1, 2, … 263 − 1

On peut construire des types plus complexes en composant les types simples. Il existe plusieurs moyens
de composer les types.

Types produits

On peut composer deux types en formant leur produit, noté : 𝑡1 × 𝑡2. On a alors |𝑡1 × 𝑡2| = |𝑡1| × |𝑡2|. En
OCaml, on note le produit de deux types t1 et t2 ainsi : t1 * t2. Par exemple :

10 Chapitre 2. Introduction

𝑡 Valeurs |𝑡|

bool * char (true, 'a'), (false, '\n'), … 2 × 256 = 512

int * int (0, 1), (3, -2), … (263 − 1) × (263 − 1)

Types sommes

On peut également composer deux types en formant leur somme, notée : 𝑡1 + 𝑡2. On a alors |𝑡1 + 𝑡2| =
|𝑡1| + |𝑡2|. En OCaml, on peut définir int+ float ainsi :

type t =
 | A of int
 | B of float

Il a comme valeurs possibles :

...; A ~-2; A ~-1; A 0; A 1; A 2; ...

...; B nan; B 0.42; B 12.34; B 100.42; ...

Un constructeur constant n’a qu’un seul habitant, par exemple :

type t =
 | A
 | B of int

Ici, A n’a qu’une seule valeur possible : A. La définition précédente est donc équivalente à :

type t =
 | A of unit
 | B of int

Et on peut donc dénoter ce type par unit+ int. Voici quelques autres exemples utilisant des types
prédéfinis :

𝑡 Valeurs |𝑡|

bool Option.t None, Some false, Some true 3

bool List.t [],
[false], [true],

[false; false], [false; true],
[true; false], [true; true],

…

∞

Tip

Les enregistrements sont aussi des types produits, par exemple :

type t = {
 x : int;
 y : int;
}

Le type t est équivalent à int * int. Ses champs sont nommés, mais il permet de représenter le
même ensemble de valeurs.

2.2 Types algébriques et dénombrement 11

Types de fonctions

Warning

On ne considère ici que les fonctions pures, i.e. sans effet de bord et qui n’échouent pas.

Enfin, on peut s’intéresser aux types de fonctions. Par exemple bool -> bool peut prendre les valeurs
suivantes :

(* Constante `false` *)
let f1 = function
 | false -> false
 | true -> false

(* Identité *)
let f2 = function
 | false -> false
 | true -> true

(* Négation *)
let f3 = function
 | false -> true
 | true -> false

(* Constante `true` *)
let f4 = function
 | false -> true
 | true -> true

Regardons un autre exemple, celui du type unit -> bool. Il peut prendre les valeurs :

let f1 () = false

let f2 () = true

On a donc |𝑡1 ⟶ 𝑡2| = |𝑡2|
|𝑡1|.

Génération et énumération

Combien de temps faut-il pour énumérer tous les entiers 32 bits ? Considérons le programme enum.ml
suivant :

let () =
 let start = Int32.to_int Int32.min_int in
 let stop = Int32.to_int Int32.max_int in
 for i = start to stop do
 Sys.opaque_identity ignore i;
 done

On peut alors le compiler et mesurer le temps d’exécution avec :

$ ocamlopt -O3 enum.ml
$ time ./a.out
./a.out 5.60s user 0.00s system 99% cpu 5.620 total

Pour faire la même énumération avec un entier 64 bits, on peut donc estimer que cela prendrait environ
232 × 5.6s ≈ 760 ans ! De plus, la fonction testée ici est simplement un appel à ignore. On comprend
alors pourquoi espérer tester n’importe quel programme avec toutes ses entrées possibles est… irréaliste.
Et pourtant, il est possible en pratique de tester ses programmes d’une façon telle que l’ont peut espérer,
sans essayer toutes les entrées possibles, détecter la grande majorité des erreurs et arriver à un résultat
similaire à celui obtenu par énumération brutale et naïve. C’est ce que l’on verra dans la suite de ce cours.

12 Chapitre 2. Introduction

3. Production manuelle de tests

Pour commencer, nous allons nous intéresser aux différentes méthodes de tests où les entrées sont
produites manuellement.

3.1 Tests manuels

Le test manuel consiste à faire tester le logiciel par un humain afin que celui-ci vérifie que tout se passe
comme prévu. Il est très utilisé en phase de prototypage, afin de vérifier rapidement que le logiciel a l’air
de faire ce que l’on veut et qu’il n’y a pas d’erreurs évidentes. Cependant, cela peut aussi s’avérer pertinent
dans d’autres contextes. C’est notamment le cas lorsque le logiciel présente une interface complexe, par
exemple parce l’interaction avec l’humain pendant l’exécution du programme est très importante (jeu
vidéo), ou encore parce que celui-ci interagit avec un environnement physique difficile à simuler (robot).
Cependant, le test manuel présente plusieurs défauts : il est généralement très coûteux (en temps humain)
et potentiellement difficile à reproduire. Par exemple, on peut provoquer une erreur en jouant à un jeu
vidéo, sans savoir exactement quelle suite d’entrées a mené à ce bogue.

La notion de boîte noire

Le test manuel est qualifié de test en boîte noire. Cela signifie que le test se fait au travers d’interactions
avec le logiciel sans « regarder à l’intérieur » de celui-ci. Dit autrement, si vous testez un jeu vidéo en y
jouant, vous interagissez uniquement avec le binaire exécutable, vous n’effectuez pas vos tests sur le code
source de celui-ci. Vous ne pouvez pas savoir comment il est implémenté, mais seulement observer les
résultats qu’il produit.

Fig. 3.1. – « What’s even worse is, a month ago they transferred me to work on the game I was already
playing, and suddenly I found myself procrastinating by playing the one I’d been assigned before. It’s

possible they’re onto me and this is all part of the plan. »

14 Chapitre 3. Production manuelle de tests

3.2 Tests unitaires

À l’opposé du test manuel, se trouve le test unitaire. Le principe de celui-ci est d’écrire de nombreux
tests (sous forme de programme), chacun d’entre eux se concentrant sur une petite partie du programme
à tester. L’avantage des tests unitaires est qu’ils sont bien moins coûteux en temps humain puisqu’une
fois qu’ils sont écrits, les exécuter est très rapide et ne nécessite pas d’intervention humaine. De plus, ils
sont généralement reproductibles puisqu’on sait exactement quelles entrées ont été utilisées.

La notion de boîte blanche

Le test unitaire est qualifié de test en boite blanche. Cela signifie que, à l’opposé des tests en boite noire,
on a accès à « l’intérieur » du programme testé.

Exemple de test unitaire

Prenons un exemple et supposons que l’on soit en train de tester une bibliothèque OCaml appelée lib.
Celle-ci contient un module Math, lequel contient une fonction square. Le module est contenu dans le
fichier math.ml suivant :

(** The Math module. *)
let square x = x * x

La bibliothèque est construite avec le fichier dune suivant :

(library
 (public_name lib)
 (modules math))

Écrire un test unitaire pour la fonction square consiste à écrire un programme de test qui appelle la
fonction Lib.Math.square sur une entrée connue et à vérifier que le résultat obtenu est bien celui auquel
on s’attend. On appelle le programme qui appelle la fonction à tester un harnais de test. Voilà un fichier
test_math.ml qui teste notre fonction sur une entrée donnée :

(** Tests for the Math module. *)

(* Test for the square function *)
let test_square () =
 let x = 3 in
 let result = Lib.Math.square x in
 let expected = 9 in
 assert (Int.equal result expected)

let () =
 test_square ();
 Format.printf "All tests are OK!"

Exécution des tests

On peut alors écrire le fichier dune suivant :

(test
 (name test_math)
 (modules test_math)
 (libraries lib))

Cela nous permet d’exécuter notre test au moyen de la commande dune runtest :

$ dune runtest
All tests are OK!
[0]

3.2 Tests unitaires 15

Warning

Dans le cas de dune, lancer la commande dune runtest plusieurs fois de suite ne va pas forcément
relancer l’ensemble des tests. En effet, afin d’économiser des ressources, dune est capable de se
rappeler des tests qui ont réussi et de ne les relancer que si l’une de leur dépendance a changé depuis
la dernière exécution. Ici, l’unique dépendance est la bibliothèque lib. Il est possible de forcer dune
à relancer les tests avec l’option --force.

Si l’on introduit volontairement une erreur dans le programme ou dans le harnais de test (par exemple en
remplaçant 9 par 6), on aura une erreur :

$ dune runtest
File "dune", line 2, characters 8-17:
6 | (name test_math)
 ^^^^^^^^^
Fatal error: exception Assert_failure("test_math.ml", 8, 2)

Bibliothèque pour les tests unitaires

En pratique, on utilise souvent des bibliothèques qui aident à l’écriture de tests unitaire. Elles fournissent
généralement des primitives qui permettent de comparer des résultats obtenus à ceux attendus, de gérer
des fonctions particulières comme celles qui lèvent des exceptions, ou encore d’afficher de manière plus
lisible de potentielles erreurs obtenues en exécutant les tests. En OCaml, la bibliothèque de test unitaire
la plus répandue est alcotest. Lorsque l’on lance dune runtest, alcotest affiche ainsi les résultats (les
exemples qui suivent ont été repris des tests de la bibliothèque synchronizer) :

Testing `Synchronizer'.
This run has ID `RLSUYDMJ'.

 ​[OK] ​Basic operations 0 Empty queue no pledges.
 ​[OK] ​Basic operations 1 Get single item.
 ​[OK] ​Basic operations 2 Get multiple items.
 ​[OK] ​Pledge mechanics 0 Manual pledge.
 ​[OK] ​Pledge mechanics 1 Get creates pledge.
 ​[OK] ​Pledge mechanics 2 Blocking on pledge.
 ​[OK] ​work_while 0 work_while simple.
 ​[OK] ​work_while 1 work_while empty.
 ​[OK] ​Close functionality 0 Close returns None.
 ​[OK] ​Close functionality 1 Close with items.
 ​[OK] ​Concurrent operations 0 Producer/consumer.
 ​[OK] ​Concurrent operations 1 Multiple workers.
 ​[OK] ​Concurrent operations 2 Concurrent write/get.
 ​[OK] ​Concurrent operations 3 Graph traversal.
 ​[OK] ​Stress tests 0 Stress test.

Full test results in `synchronizer/_build/default/test/_build/_tests/Synchronizer'.
Test Successful in 0.018s. 15 tests run.

Son utilisation présente plusieurs avantages au fait de gérer manuellement les tests. En particulier, les
tests sont documentés via le groupe et la description qui leur sont attribués. De plus, même si l’un des tests
échoue, les autres sont lancés (on ne s’arrête pas à la première erreur). Il permet également de sélectionner
un sous-ensemble de tests à lancer. Enfin, lorsqu’un test échoue, il affiche la valeur obtenue et celle qui
était attendue, et enregistre les sorties standard et d’erreurs dans un fichier pour permettre d’investiguer :

Testing `Synchronizer'.
This run has ID `5MJ9FN0B'.

 ​[OK] ​Basic operations 0 Empty queue no pledges.
> ​[FAIL] ​Basic operations 1 Get single item.
 ​[OK] ​Basic operations 2 Get multiple items.
 ​[OK] ​Pledge mechanics 0 Manual pledge.
 ​[OK] ​Pledge mechanics 1 Get creates pledge.
 ​[OK] ​Pledge mechanics 2 Blocking on pledge.
 ​[OK] ​work_while 0 work_while simple.
 ​[OK] ​work_while 1 work_while empty.
 ​[OK] ​Close functionality 0 Close returns None.
 ​[OK] ​Close functionality 1 Close with items.
 ​[OK] ​Concurrent operations 0 Producer/consumer.
 ​[OK] ​Concurrent operations 1 Multiple workers.

16 Chapitre 3. Production manuelle de tests

 ​[OK] ​Concurrent operations 2 Concurrent write/get.
 ​[OK] ​Concurrent operations 3 Graph traversal.
 ​[OK] ​Stress tests 0 Stress test.

┌──┐
│ ​[FAIL] ​Basic operations 1 Get single item.

│

└──┘
ASSERT get returns Some 42
FAIL get returns Some 42

 Expected: `Some 666'
 Received: `Some 42'

Logs saved to `
synchronizer/_build/default/test/_build/_tests/Synchronizer/
Basic operations.001.output '.

Full test results in `synchronizer/_build/default/test/_build/_tests/Synchronizer'.
1 failure! in 0.018s. 15 tests run.

L’écriture d’un test se fait ainsi :

let test_get_single_item () =
 let result = (* call to the function being tested *) in
 Alcotest.(check (option int)) "get returns Some 42" (Some 42) result

La déclaration d’un groupe de tests est une simple liste où l’on décrit chaque test :

let basic_tests =
 [Alcotest.test_case "Empty queue no pledges" `Quick test_empty_queue_no_pledges
 ; Alcotest.test_case "Get single item" `Quick test_get_single_item
 ; (* ... *)]

Finalement, on peut lancer l’ensemble de nos groupes de tests de cette manière :

let () =
 Alcotest.run "Synchronizer"
 [("Basic operations", basic_tests)
 ; ("Pledge mechanics", pledge_tests)
 (* ... *)
]

Ces bibliothèques pour le test unitaire ne sont généralement pas particulièrement sophistiquées, mais
elles rendent le travail quotidien avec les tests unitaires plus agréable.

3.3 Tests d’intégration

Les tests d’intégration sont des tests où l’on considère le comportement d’une grosse portion du
programme, et non plus une petite partie de celui-ci comme dans le cas des tests unitaires.

Cram tests

Les cram tests sont des tests d’intégration pour les outils en ligne de commande. Cram était à l’origine un
programme mais différentes variantes ont depuis été implémentées et les cram tests désignent aujourd’hui
la méthode qui en est issue plutôt que cet outil. En particulier, dune intègre nativement un système de
cram tests.

Au sein de dune, les cram tests sont des fichiers ayant l’extension .t. Toutes les lignes qui ne sont pas
indentées sont des commentaires. En revanche, toutes les lignes indentées de deux espaces sont des lignes
significatives. L’idée consiste à écrire une série de commandes :

On peut appeler l'outil que l'on souhaite tester et sauvegarder sa sortie :
 $./my_amazing_tool.exe > output.txt

Les lignes significatives commençant par $ sont des commandes qui vont être exécutées. Mais l’autre
atout majeur des cram tests réside dans les lignes significatives qui commencent par un autre caractère :

https://bitheap.org/cram
https://bitheap.org/cram

3.3 Tests d’intégration 17

celles-ci représentent en effet la sortie attendue des commandes exécutées. Par exemple, si l’on reprend
notre exempe précédent, on peut vérifier que le fichier a bien été créé et que son contenu est le bon :

 $./my_amazing_tool.exe > output.txt
Vérifions le contenu du nouveau fichier :
 $ cat output.txt
 Hello from my_amazing_tool!

Si au cours du temps, le programme est modifié pour ne plus afficher ce message mais « Hello, world! » à
la place, voilà la sortie qui sera produite par dune runtest :

File "amazing.t", line 1, characters 0-0:
------ ​amazing.t
++++++ ​amazing.t.corrected
File "amazing.t", line 3, characters 0-1:
 | $./my_amazing_tool.exe > output.txt
 | $ cat output.txt
-| Hello ​from my_amazing_tool!
+| Hello, ​world!

File "git_help.t", line 1, characters 0-0:
------ ​git_help.t
++++++ ​git_help.t.corrected
File "git_help.t", line 2, characters 0-1:
 | $ git --help
+| usage: git [-v | --version] [-h | --help] [-C <path>] [-c <name>=<value>]
+| [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
+|
 [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--no-lazy-fetch]
+| [--no-optional-locks] [--no-advice] [--bare] [--git-dir=<path>]
+|
 [--work-tree=<path>] [--namespace=<name>] [--config-env=<name>=<envvar>]
+| <command> [<args>]
+| ​
+| These are common Git commands used in various situations:
+| ​
+| start a working area (see also: git help tutorial)
+| clone Clone a repository into a new directory
+| init Create an empty Git repository or reinitialize an existing one
+| ​
+| work on the current change (see also: git help everyday)
+| add Add file contents to the index
+| mv Move or rename a file, a directory, or a symlink
+| restore Restore working tree files
+| rm Remove files from the working tree and from the index
+| ​
+| examine the history and state (see also: git help revisions)
+| bisect Use binary search to find the commit that introduced a bug
+| diff Show changes between commits, commit and working tree, etc
+| grep Print lines matching a pattern
+| log Show commit logs
+| show Show various types of objects
+| status Show the working tree status
+| ​
+| grow, mark and tweak your common history
+| backfill Download missing objects in a partial clone
+| branch List, create, or delete branches
+| commit Record changes to the repository
+| merge Join two or more development histories together
+| rebase Reapply commits on top of another base tip
+| reset Reset current HEAD to the specified state
+| switch Switch branches
+| tag Create, list, delete or verify a tag object signed with GPG
+| ​
+| collaborate (see also: git help workflows)
+| fetch Download objects and refs from another repository
+| pull Fetch from and integrate with another repository or a local branch
+| push Update remote refs along with associated objects
+| ​
+| 'git help -a' and 'git help -g' list available subcommands and some
+| concept guides. See 'git help <command>' or 'git help <concept>'
+| to read about a specific subcommand or concept.
+| See 'git help git' for an overview of the system.

18 Chapitre 3. Production manuelle de tests

Et de finir par la commande dune promote pour avoir un fichier de test complet. Ce comportement est
aussi très utile lorsque la sortie d’un programme évolue au cours de temps : il est bien plus agréable de
taper ces quelques commandes pour inspecter le résultat et mettre à jour le test, plutôt que de devoir
modifier à la main la sortie attendue par de nombreux tests unitaires manipulant des chaînes de caractères.

Expect tests

• en OCaml, ppx_expect

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

4. Évaluer la qualité d’une suite de tests

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

4.1 La couverture du code

• bisect_ppx en OCaml

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

4.2 Graphes d’appel et graphes de flot de contrôle

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

4.3 Critères de couverture formels

• mesures formelles de couverture (coverage criteria)
• labels

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

20 Chapitre 4. Évaluer la qualité d’une suite de tests

4.4 Mutation testing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5. Génération de tests automatique

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5.1 Property Testing: QuickCheck

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5.2 Fuzzing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5.2.1 Boîte noire : Radamsa

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5.2.2 Boîte grise : AFL++

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

22 Chapitre 5. Génération de tests automatique

5.2.2.1 Crowbar

5.2.3 Boîte blanche : libFuzzer

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5.3 Exécution symbolique et concolique

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

5.4 Bounded Model Checking : CBMC

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri amplifi
carique non possit. At.

6. TODO

• Forge
• documentation (Conventional Commits, CHANGELOG, API, manpage, diataxeis, MDX)
• source of failures (type error, memory error, oob, undefined behaviours, unspecified behaviours, race

condition, thread-safety etc.)
• debug
• benchmarks / optimisation
• CI
• deploiement / reproducibilité / packaging / NixOS
• proof of programs (specification language??) (more on abstract interpretation, deductive verification ?)
• assertions, RAC ?
• détection de code mort ?
• solveurs SAT/SMT ?

24 Chapitre 6. TODO

Bibliographie

	1. Avant-propos
	 Remerciements

	2. Introduction
	2.1 Méthodes de détection d'erreurs
	 Preuve de programme
	 Interprétation abstraite
	 Test

	2.2 Types algébriques et dénombrement
	 Type et habitants
	 Types produits
	 Types sommes
	 Types de fonctions
	 Génération et énumération

	3. Production manuelle de tests
	3.1 Tests manuels
	 La notion de boîte noire

	3.2 Tests unitaires
	 La notion de boîte blanche
	 Exemple de test unitaire
	 Exécution des tests
	 Bibliothèque pour les tests unitaires

	3.3 Tests d'intégration
	 Cram tests
	 Expect tests

	4. Évaluer la qualité d'une suite de tests
	4.1 La couverture du code
	4.2 Graphes d'appel et graphes de flot de contrôle
	4.3 Critères de couverture formels
	4.4 Mutation testing

	5. Génération de tests automatique
	5.1 Property Testing: QuickCheck
	5.2 Fuzzing
	5.2.1 Boîte noire : Radamsa
	5.2.2 Boîte grise : AFL++
	5.2.2.1 Crowbar

	5.2.3 Boîte blanche : libFuzzer

	5.3 Exécution symbolique et concolique
	5.4 Bounded Model Checking : CBMC

	6. TODO
	Bibliographie

